Impact of chemical amendment of dairy cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a grassland soil.

نویسندگان

  • R B Brennan
  • O Fenton
  • J Grant
  • M G Healy
چکیده

Emerging remediation technologies such as chemical amendment of dairy cattle slurry have the potential to reduce phosphorus (P) solubility and consequently reduce P losses arising from land application of dairy cattle slurry. The aim of this study was to determine the effectiveness of chemical amendment of slurry to reduce incidental losses of P and suspended sediment (SS) from grassland following application of dairy cattle slurry and to examine the effect of amendments on metal concentrations in runoff water. Intact grassed-soil samples were placed in two laboratory runoff boxes, each 200-cm-long by 22.5-cm-wide by 5-cm-deep, before being amended with dairy cattle slurry (the study control) and slurry amended with either: (i) alum, comprising 8% aluminium oxide (Al(2)O(3)) (1.11:1 aluminium (Al):total phosphorus (TP) of slurry) (ii) poly-aluminium chloride hydroxide (PAC) comprising 10% Al(2)O(3) (0.93:1 Al:TP) (iii) analytical grade ferric chloride (FeCl(2)) (2:1 Fe:TP), (iv) and lime (Ca(OH)(2)) (10:1 Ca:TP). When compared with the study control, PAC was the most effective amendment, reducing dissolved reactive phosphorus (DRP) by up to 86% while alum was most effective in reducing SS (88%), TP (94%), particulate phosphorus (PP) (95%), total dissolved phosphorus (TDP) (81%), and dissolved unreactive phosphorus (DUP) (86%). Chemical amendment of slurry did not appear to significantly increase losses of Al and Fe compared to the study control, while all amendments increased Ca loss compared to control and grass-only treatment. While chemical amendments were effective, the reductions in incidental P losses observed in this study were similar to those observed in other studies where the time from slurry application to the first rainfall event was increased. Timing of slurry application may therefore be a much more feasible way to reduce incidental P losses. Future work must examine the long-term effects of amendments on P loss to runoff and not only incidental losses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incidental phosphorus and nitrogen loss from grassland plots receiving chemically amended dairy cattle slurry.

Chemical amendment of dairy cattle slurry has been shown to effectively reduce incidental phosphorus (P) losses in runoff; however, the effects of amendments on incidental nitrogen (N) losses are not as well documented. This study examined P and N losses in runoff during three simulated rainfall events 2, 10 and 28 days after a single application of unamended/chemically amended dairy cattle slu...

متن کامل

Effect of chemical amendments to dairy soiled water and time between application and rainfall on phosphorus and sediment losses in runoff.

Dairy soiled water (DSW) is a dilute, low nutrient effluent produced on Irish dairy farms through the regular washing down of milking parlours and holding areas. In Ireland, there is no closed period for the land application of DSW except where heavy rain is forecast within 48 h. Chemical amendments have the potential to decrease phosphorus (P) and suspended sediment (SS) loss from DSW applied ...

متن کامل

Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil.

Treated municipal sewage sludge ("biosolids") and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising fro...

متن کامل

Chemical amendment of pig slurry: control of runoff related risks due to episodic rainfall events up to 48 h after application.

Losses of phosphorus (P) from soil and slurry during episodic rainfall events can contribute to eutrophication of surface water. However, chemical amendments have the potential to decrease P and suspended solids (SS) losses from land application of slurry. Current legislation attempts to avoid losses to a water body by prohibiting slurry spreading when heavy rainfall is forecast within 48 h. Th...

متن کامل

The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping

Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Science of the total environment

دوره 409 23  شماره 

صفحات  -

تاریخ انتشار 2011